Fork me on GitHub

类加载机制

虚拟机把描述类的数据从Class文件加载到内存,并对数据进行校验、转化解析和初始化,最终形成可以被虚拟机直接使用的java类型,这就是虚拟机的类加载机制。

类加载的时机

类从加载到卸载整个生命周期包括:加载、验证、准备、解析、初始化、使用、卸载等7个阶段,其中验证、准备、解析统称为连接。如图:
类的生命周期
什么情况下需要开始类加载过程的第一个阶段:”加载”。虚拟机规范中并没强行约束,这点可以交给虚拟机的的具体实现自由把握,但是对于初始化阶段虚拟机规范是严格规定了如下几种情况,如果类未初始化会对类进行初始化。

  • 创建类的实例
  • 访问类的静态变量
  • 访问类的静态方法
  • 反射调用
  • 当初始化一个类时,发现其父类还未初始化,则先触发父类的初始化
  • 虚拟机启动时,定义了main()方法的那个类先初始化
    以上情况称为称对一个类进行“主动引用”,除此种之外,均不会触发类的初始化,称为“被动引用”
    接口的加载过程与类的加载过程稍有不同。接口中不能使用static{}块。当一个接口在初始化时,并不要求其父接口全部都完成了初始化,只有真正在使用到父接口时(例如引用接口中定义的常量)才会初始化。

被动引用例子

  • 子类调用父类的静态变量,子类不会被初始化。只有父类被初始化。对于静态字段,只有直接定义这个字段的类才会被初始化.
  • 通过数组定义来引用类,不会触发类的初始化
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    class SuperClass {
    static {
    System.out.println("superclass init");
    }
    public static int value = 123;
    }
    class SubClass extends SuperClass {
    static {
    System.out.println("subclass init");
    }
    }
    public class Test {
    public static void main(String[] args) {
    System.out.println(SubClass.value);// 被动应用1,子类调用父类的静态变量
    SubClass[] sca = new SubClass[10];// 被动引用2,数组定义来引用类
    }
    }

程序运行输出 superclass init
123
从上面的输入结果证明了被动引用1与被动引用2

  • 访问类的常量,不会初始化类
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    class ConstClass {
    static {
    System.out.println("ConstClass init");
    }
    public static final String HELLOWORLD = "hello world";
    }
    public class Test {
    public static void main(String[] args) {
    System.out.println(ConstClass.HELLOWORLD);// 被动引用3,调用类常量
    }
    }

程序输出结果 hello world
从上面的输出结果证明了被动引用3

类加载的过程

详解加载、验证、准备、解析和初始化这5个阶段所执行的具体动作。

加载

“加载”(Loading)阶段是“类加载”(Class Loading)过程的第一个阶段,在此阶段,虚拟机需要完成以下三件事情:
1、通过一个类的全限定名来获取定义此类的二进制字节流。
2、将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构。
3、在Java堆中生成一个代表这个类的java.lang.Class对象,作为方法区这些数据的访问入口。

加载阶段即可以使用系统提供的类加载器在完成,也可以由用户自定义的类加载器来完成。加载阶段与连接阶段的部分内容(如一部分字节码文件格式验证动作)是交叉进行的,加载阶段尚未完成,连接阶段可能已经开始。

验证

验证是连接阶段的第一步,这一阶段的目的是为了确保Class文件的字节流中包含的信息符合当前虚拟机的要求,并且不会危害虚拟机自身的安全。不同的虚拟机,对类验证的实现可能有所不同,但大致都会完成下面四个阶段的验证:文件格式验证、元数据验证、字节码验证和符号引用验证。

  • 文件格式验证: 是要验证字节流是否符合Class文件格式的规范,并且能被当前版本的虚拟机处理。如验证魔数是否0xCAFEBABE;主、次版本号是否正在当前虚拟机处理范围之内;常量池的常量中是否有不被支持的常量类型;指向常量的索引值是否指向不存在的常量或不符合类型的常量等等…该验证阶段的主要目的是保证输入的字节流能正确地解析并存储于方法区中,经过这个阶段的验证后,字节流才会进入内存的方法区中存储,所以后面的三个验证阶段都是基于方法区的存储结构进行的。
  • 元数据验证: 是对字节码描述的信息进行语义分析,以保证其描述的信息符合Java语言规范的要求。可能包括的验证如:这个类是否有父类;这个类的父类是否继承了不允许被继承的类;如果这个类不是抽象类,是否实现了其父类或接口中要求实现的所有方法…
  • 字节码验证: 主要工作是进行数据流和控制流分析,保证被校验类的方法在运行时不会做出危害虚拟机安全的行为。如果一个类方法体的字节码没有通过字节码验证,那肯定是有问题的;但如果一个方法体通过了字节码验证,也不能说明其一定就是安全的。应为因为存在“停机问题”,通俗来讲,就是通过程序去校验程序逻辑是无法做到绝对准确的。由于数据校验的高复杂性,在JDK1.6之后给方法体的Code属性加入了名为“StackMapTable”的属性,可以将字节码的推导准变为类型检查从而节省时间。jdk1.6可以通过设置参数关闭优化或在类型校验失败时退回到类型推导,而jdk1.7不允许退回。
  • 符号引用验证: 发生在虚拟机将符号引用转化为直接引用的时候,这个转化动作将在“解析阶段”中发生。验证符号引用中通过字符串描述的权限定名是否能找到对应的类;在指定类中是否存在符合方法字段的描述符及简单名称所描述的方法和字段;符号引用中的类、字段和方法的访问性(private、protected、public、default)是否可被当前类访问等等…
    验证阶段对于虚拟机的类加载机制来说,不一定是必要的阶段。如果所运行的全部代码确认是安全的,可以使用-Xverify:none参数来关闭
    大部分的类验证措施,以缩短虚拟机类加载时间。

准备

准备阶段是为类的静态变量分配内存并将其初始化为默认值,这些内存都将在方法区中进行分配。准备阶段不分配类中的实例变量的内存,实例变量将会在对象实例化时随着对象一起分配在Java堆中。
public static int value=123;//在准备阶段value初始值为0 。在初始化阶段才会变为123。
public static final int value=123; //编译时将会为value生成ConstantValue属性,准备阶段进行初始化为123。

解析

解析阶段是虚拟机将常量池内的符号引用替换为直接引用的过程。
符号引用(Symbolic Reference):符号引用以一组符号来描述所引用的目标,符号可以是任何形式的字面量,只要使用时能无歧义地定位到目标即可。符号引用与虚拟机实现的内存布局无关,引用的目标并不一定已经加载到内存中。

直接引用(Direct Reference):直接引用可以是直接指向目标的指针、相对偏移量或是一个能间接定位到目标的句柄。直接引用是与虚拟机实现的内存布局相关的,如果有了直接引用,那么引用的目标必定已经在内存中存在。

解析动作主要针对类或接口、字段、类方法、接口方法、方法类型、方法句柄和调用点限定符。

初始化

类初始化是类加载过程的最后一步,前面的类加载过程,除了在加载阶段用户应用程序可以通过自定义类加载器参与之外,其余动作完全由虚拟机主导和控制。到了初始化阶段,才真正开始执行类中定义的Java程序代码。

  • 初始化阶段是执行类构造器<clinit>()方法的过程。<clinit>()方法是由编译器自动收集类中的所有类变量的赋值动作和静态语句块(static{}块)中的语句合并产生的.收集顺序有源文件的程序顺序决定,静态语句块只能访问到它之前的变量,之后的变量只能赋值不能访问.
  • <clinti>()不需要显示调用父类构造器,虚拟机会保证在子类的<clinit>()执行之前,父类的<clinit>()已执行完毕,也就意味着父类的静态语句块优先于子类的执行。
  • <clinti>()对于类或接口不是必须的,如果类中没有静态块或赋值语句,就不会产生<clinti>()
  • 接口也会产生<clinti>()方法。只有当使用父接口的变量时才会初始化父接口,另外接口的实现类初始化时也不会执行接口的<clinti>()方法。
  • <clinti>()是虚拟机保证线程安全的。

类加载器

对于任意一个类,都需要由加载它的类加载器和这个类本身一同确立其在Java虚拟机中的唯一性,每一个类加载器,都有一个一个独立的类命名空间。通俗来讲就是,比较两个类是否“相等”,只有在这两个类由同一个类加载器加载的前提下才有意义,否则,即使这两个类来源于同一个Class文件,加载他们的类加载器不同,那这两个类必定不相等。

双亲委派模型

类加载器种类

从Java虚拟机的角度来说,只存在两种不同的类加载器:一种是启动类加载器(Bootstrap ClassLoader),这个类加载器使用C++语言实现(HotSpot虚拟机中),是虚拟机自身的一部分;另一种就是所有其他的类加载器,这些类加载器都由Java语言实现,独立于虚拟机外部,并且全部继承自抽象类java.lang.ClassLoader。
从开发者的角度,类加载器可以细分为:

  • 启动(Bootstrap)类加载器:负责将 Java_Home/lib下面的类库加载到内存中(比如rt.jar)。由于引导类加载器涉及到虚拟机本地实现细节,开发者无法直接获取到启动类加载器的引用,所以不允许直接通过引用进行操作。

  • 标准扩展(Extension)类加载器:是由 Sun 的 ExtClassLoader(sun.misc.Launcher$ExtClassLoader)实现的。它负责将Java_Home /lib/ext或者由系统变量 java.ext.dir指定位置中的类库加载到内存中。开发者可以直接使用标准扩展类加载器。

  • 应用程序(Application)类加载器:是由 Sun 的 AppClassLoader(sun.misc.Launcher$AppClassLoader)实现的。它负责将系统类路径(CLASSPATH)中指定的类库加载到内存中。开发者可以直接使用系统类加载器。由于这个类加载器是ClassLoader中的getSystemClassLoader()方法的返回值,因此一般称为系统(System)加载器。

除此之外,还有自定义的类加载器,它们之间的层次关系被称为类加载器的双亲委派模型。该模型要求除了顶层的启动类加载器外,其余的类加载器都应该有自己的父类加载器,而这种父子关系一般通过组合(Composition)关系来实现,而不是通过继承(Inheritance)。如图:
双亲委派模型

双亲委派模型过程

某个特定的类加载器在接到加载类的请求时,首先将加载任务委托给父类加载器,依次递归,如果父类加载器可以完成类加载任务,就成功返回;只有父类加载器无法完成此加载任务时,才自己去加载。
使用双亲委派模型的好处在于Java类随着它的类加载器一起具备了一种带有优先级的层次关系。

双亲委派模型的系统实现

在java.lang.ClassLoader的loadClass()方法中,先检查是否已经被加载过,若没有加载则调用父类加载器的loadClass()方法,若父加载器为空则默认使用启动类加载器作为父加载器。如果父加载失败,则抛出ClassNotFoundException异常后,再调用自己的findClass()方法进行加载。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
protected synchronized Class<?> loadClass(String name,boolean resolve)throws ClassNotFoundException{
//首先检查请求的类是否已经加载过了
Class c = findLoadedClass(name);
if(c == null){
try{
if(parent != null){
c = parent.loadClass(name,false);
}else{
c = findBootstrapClassOrNull(name);
}
}catch(ClassNotFoundException e){
//若父类抛出异常,说明父类无法完成加载请求
}
//父类无法加载时,再调用本身的findClass()方法进行加载
if(c == null){
c = findClass(name);
}
}
if(resolve){
resolveClass(c);
}
return c;
}

破坏双亲委派模型

双亲委派模型是Java设计者推荐给开发者的类加载器的实现方式,并不是强制规定的。大多数的类加载器都遵循这个模型,但是JDK中也有较大规模破坏双亲模型的情况,例如线程上下文类加载器(Thread Context ClassLoader)的出现,具体参考《深入理解Java虚拟机》。

-------------本文结束感谢您的阅读-------------
坚持原创技术分享,您的支持将鼓励我继续创作!